Dynamical generation of spin squeezing in ultra-cold dipolar molecules

June 4th, DAMOP 2021

Thomas Bilitewski, L. Marco, J. Li, K. Matsuda, W. G. Tobias, G. Valtolina, Jun Ye, Ana Maria Rey JILA, CU Boulder, NIST Phys. Rev. Lett. 126, 113401 (2021)

Summary

What

- Dipolar KRb molecules
- Confinement in 2D/single layer

Spin model in mode space

Why

- Long-range interactions
- Enhanced interactions & suppressed losses
- Homogeneous couplings

Benefits

- Robust collective spin-dynamics
- Robust generation of entangled/spin-squeezed states (\sim 19 dB)
- Time-Reversal & measurement noise robust enhanced sensing $(\Delta E \sim 188 \,(nV/cm)/\sqrt{Hz})$

Milestones & Recent Advances in dipolar molecules

- Preparation at high phase-space density ¹
- Observation of dipolar exchange ²
- Low entropy lattice preparation ³

- Bulk quantum degenerate dipolar Fermi gas ⁴
- \blacktriangleright 2D preparation & suppression of losses ⁵
- Collisional shielding of collisions ⁶
- Microwave shielding ⁷
- State-control of reactions ⁸

- ¹ K.-K. Ni et al., Science 322 (2008)
- ² J. Ye et al., Nature 501 (2013)
- ³ D.S. Jin et al., Science 350 (2015)
- ⁴ J. Ye et al., Science 363 (2019)

- ⁵ J. Ye et al., Nature 588 (2020)
- ⁶ J. Ye et al., Science 11 (2020)
- ⁷ Doyle et al., arXiv:2102.04365 (2021)
- ⁸ K.-K. Ni et al., Nat. Chem. 13 (2021)

Key Advantages of 2D

¹ K-K Ni et al., Nature 464 (2010)

² J. Ye et al., Science 11 (2020)

$$\mathcal{H} = \mathcal{H}_{\mathrm{rot}} + \mathcal{H}_{\mathrm{motional}} + \mathcal{H}_{\mathrm{dip}}$$

$$\mathcal{H} = \mathcal{H}_{\mathrm{rot}} + \mathcal{H}_{\mathrm{motional}} + \mathcal{H}_{\mathrm{dip}}$$

$$\mathcal{H}_{dip} = \sum_{i,j} \frac{1}{4\pi\epsilon_0 R^3} \left[\hat{\mathbf{d}}_i \cdot \hat{\mathbf{d}}_j - 3(\hat{R} \cdot \hat{\mathbf{d}}_i)(\hat{R} \cdot \hat{\mathbf{d}}_j) \right]$$

Spin Model in mode space

Key approximations

- Expand in harmonic oscillator basis
- collisionless regime
- neglect mode-changing interaction terms

Spin Model in mode space

Key Advantages of Mode Space lattices

One-axis twisting

$$\mathcal{H}=ar{J_{\perp}}\hat{S}^2+(ar{J_z}-ar{J_{\perp}})\hat{S}_z^2+ar{h}_z\hat{S}_z$$

$$\hat{S} = \sum_{i} \hat{s}_{i} / N$$

 $ar{J}_{lpha} = rac{1}{N^2} \sum_{i,j} J_{ij}^{lpha} \quad ar{h}_{z} = rac{1}{N} \sum_{i} h_{i}^{z}$

¹ Kitagawa & Ueda, PRA 47 (1993)

Dynamical phase transition/Robustness to dephasing

$$Contrast$$
$$C(t) = |S(t)|/N$$

Gap Protection

Many-body Gap
$$\sim N\bar{J}_{\perp}(E)$$

Robust Squeezing

$$\xi_s^2 = N \frac{\min_{\phi} \langle \operatorname{Var}[\hat{S}_{\phi}^{\perp}] \rangle}{|\langle \hat{\mathbf{S}} \rangle|^2}$$

Robust sensing protocol via time-reversal

Sensing capability

• $\Delta E \approx 188 \, (\text{nV/cm}) / \sqrt{\text{Hz}}$

• at
$$E = 1 \, \text{kV/cm}$$

- ▶ for 10 ms phase accumulation
- sensitive to DC-fields

- Robust collective spin-dynamics
- Robust generation of entangled/spin-squeezed states (\sim 19 dB)
- Exploit Level-Structure for Time-Reversal
- Measurement noise robust enhanced sensing ($\Delta E \approx 188 \,({\rm nV/cm})/\sqrt{{\rm Hz}}$)

- Study of non-equilibrium dynamics?
- Non-trivial many-body phases/dynamics?

Thank you for your attention!

Thomas Bilitewski

Ana Maria Rey

Jun Ye KRb Group

Contacts

- After-Session Networking
- t.bilitewski@gmail.com
- www.thomas-bilitewski.com

